
Time in Multi-Agent Systems

Niklas Fiekas

Department of Informatics, Clausthal University of Technology
Julius-Albert-Str. 4, D-38678 Clausthal

niklas.fiekas@tu-clausthal.de

Abstract. This is a research proposal, aiming to improve tooling and
features of agent-oriented programming languages, in particular Jason,
to handle virtual time and real-time deadlines. The main idea is to ap-
ply known techniques and patterns from asynchronous programming in
classical programming languages, and extend Jason as necessary.

Keywords: agent-oriented programming, simulation, soft real-time

1 Introduction

This early stage proposal is motivated by two use cases that were encountered
in prior research.

First, the SimSE (Simulating Software Evolution) project aims to simulate
the behavior of human software developers, in order to make predictions about
deadlines and software quality [1]. The environment is a graph created from the
real software repository to be simulated. The developers are modelled as BDI
agents in a multi-agent system, using Jason/AgentSpeak to describe plans.

This kind of simulation is typically divided into discrete virtual time steps,
but by default all actions and reasoning in Jason are performed instantly, with
little support to model the time that a simulated human developer would take,
much less synchronize a simulated virtual clock across agents.

Second, the yearly multi-agent programming contest provides challeng-
ing scenarios to benchmark multi-agent programming languages, platforms and
tools [2]. Contest games are played in discrete time steps (typically 4 seconds).
The participants program agents that receive percepts and submit actions for
each step.

This is a soft real-time system. Missing the deadline to submit an action
for the current step is not fatal, but it degrades the performance of team. Fur-
thermore, participants report a snowball effect: Missing one deadline leads to
a backlog of incoming percepts, and more missed deadlines if the agent cannot
catch up. It can be difficult to recover.

It seems likely that the described issues with virtual time, real time, and
deadlines are common in multi-agent systems, especially when simulating real-
world scenarios or moving closer to the implementation of physical systems,
including ambient AI. The proposal is therefore to survey the state of solutions
in multi-agent systems, and improve them on the language and platform level.



2 Niklas Fiekas

2 Related Work

On the practical side, the motivating examples come from the SimSE project [1]
and the yearly Multi-Agent Programming contest. In the latter, participants
describe their experience and practical issues while implementing multi-agent
systems [2].

Jason 2.0 recently introduced the fork/join operators, to support structured
plan level concurrency [3], and foundations for concurrent programming are
laid [4].

On the theoretical side, approaches using LTL, CTL and extensions [5] can
show properties like safety and liveness (never something, always eventually
again), but are not designed to answer if agents can meet a particular deadline.

Keeping time and achieving consensus in distributed systems comes with
interesting algorithmic challenges [6], but this is a not an issue with virtual time
in simulated environments, nor when trying to meet deadlines of a centralized
game server (intended to simulate deadlines of local sensors and actuators).

Real time agent systems are typically not BDI based, much less using high
level agent languages like Jason [7]. Outside of the agent community, there is
a wide array of work around asynchronous programming in classical program-
ming languages. Many languages adopted syntax extensions to support writing
asynchronous programs in straight-line fashion (e.g., Python, JavaScript, Rust,
Kotlin).

All in all, this is an active area of research (even with regard to classical
programming languages). This proposal focuses on improvements to practical
agent oriented programming.

3 Proposal

The driving conjecture is that many of the techniques and patterns for asyn-
chronous programming in classical languages can also be applied to agent-oriented
languages, such as Jason. This is not obvious. Consider for example negative re-
sults for the analogous conjecture with regard to testing and fuzzing [8].

Initial techniques to investigate are generators and coroutines. These involve
computations that can be interrupted and resumed at predefined points, for
example to wait for network I/O. Before using these techniques, they must be
unified with the operational semantics of Jason agents. Instead of simply putting
them on top, it seems possible to express the existing Jason semantics in these
terms. For example, plans can also be interrupted in favor of other plans and
resumed later. This is the first work package.

Existing Jason programs should be shown to be equivalent under the new
semantics. This is the second work package, although it may be deferred, in
order to first gain more confidence in the practical relevance of the proposed
semantics, with possible iterations on the design.

Many classical programming languages have added language level features
to support the mentioned techniques. The proposal therefore includes extending



Time in Multi-Agent Systems 3

the Jason language as necessary and providing a working implementation. This
is a third work package, and will provide the means for further evaluation.

Generators and coroutines are frequently combined with timeouts and can-
cellation tokens, or to build structured concurrency abstractions. In new Jason
programs, timeouts and cancellations should interact in practically useful ways
with long term desires and short term intentions of agents, as well as recovery
plans. The final work package is evaluating this based on the use cases from the
introduction.

4 Preliminary Results

An extensible Jason interpreter has been developed, https://github.com/niklasf/
python-agentspeak. So far, the main novelty is the ability to pause the interpreter
at any time, including during agent actions and even Prolog queries, and quickly
serialize the state. This is achieved by translating Jason programs to control-flow
graphs with high level instructions. The following instructions are sufficient to
express all Jason plans:

noop(agent, intention) Does nothing and succeeds always.

push query(query, agent, intention) Starts a Prolog query and adds it to the
query stack. This is also used for actions that can yield multiple results.

next or fail(agent, intention) Tries to find the next solution for the topmost Prolog
query, a substitution of variables.

pop query(agent, intention) Removes the topmost Prolog query from the query
stack.

add belief(term, agent, intention) Applies the current substitution to term and
adds it to the belief base. Triggers a belief addition event.

remove belief(term, agent, intention) Unifies term with the first matching belief
and removes it from the belief base. Triggers a belief removal event.

test belief(term, agent, intention) Tries to find a substitution such that term is
a logical consequence of the belief base. Triggers a belief test event.

call(trigger, goal type, term, agent, intention) Tries to find a plan matching the
trigger, goal type and term and adds it as a sub-plan to the current intention.

call delayed(trigger, goal type, term, agent, intention) Tries to find a match-
ing plan and crates a new intention with it.

Initially this was designed in order to apply data parallelism to multi-agent
simulation (e.g., treat agent states as just data and apply techniques like MapRe-
duce to advance the simulation).

However, the same design also allows bringing asynchronous programming to
Jason. This includes having agents wait for a synchronized virtual clock without
wasting time in the real world, and actual asynchronous communication with
the game server of the multi-agent programming contest.

On the other hand the current design is not yet satisfactory for soft real-time
systems. While the instructions call, call delayed, push query, pop query,
and of course trivially noop, are constant time, it is hard to predict if queries to



4 Niklas Fiekas

the belief base (add belief, remove belief, test belief) and next or fail

will complete before a given deadline.
Also, importantly, the control flow graph is currently limited to individual

plans. This will not suffice, as interactions of errors, timeouts, cancellation and
recovery plans appear to be essential.

5 Evaluation Plan

To evaluate new approaches, it seems useful to come back around to the mo-
tivating examples. In the SimSE project, the goal is to simulate the behavior
of human software developers. It will be interesting to see if the existing agents
can be simplified, and if more detailed modelling in future iterations can be
supported.

For the multi-agent programming contest, participants submit the source
code of their solutions, and comment on difficulties that they encountered. Some
teams used Jason for their solutions, so it will be possible to apply and evaluate
new approaches based on these agent programs.

Finally, language level changes might impact the performance of the Jason
interpreter. Its performance can be evaluated in benchmarks and compared with
previous versions and the original Jason interpreter.

References

1. T. Ahlbrecht, J. Dix, N. Fiekas, J. Grabowski, V. Herbold, D. Honsel, S. Waack,
and M. Welter. Agent-based simulation for software development processes. In Pro-
ceedings of the 14th European Conference on Multi-Agent Systems, EUMAS 2016.
Springer, December 2016.

2. T. Ahlbrecht, J. Dix, and N. Fiekas: The Multi-Agent Programming Contest 2018 -
Agents teaming up in an urban environment. Springer, 2019. https://link.springer.
com/book/10.1007/978-3-030-37959-9.

3. Concurrency in Jason. https://github.com/jason-lang/jason/blob/master/doc/
tech/concurrency.adoc.

4. A. Muscar, C. Badica. Monadic Foundations for Promises in Jason. Informa-
tion Technology And Control 43 (1), 65-72. http://www.itc.ktu.lt/index.php/ITC/
article/view/4586.

5. R. H. Bordini, M. Fisher, C. Pardavila, M. Wooldridge. Model Checking AgentS-
peak. Proceedings of the second international joint conference on Autonomous
agents and multiagent systems, 409–416, July 2003. https://dl.acm.org/doi/10.
1145/860575.860641.

6. T. Yang, Z. Meng, D. V. Dimarogonas, K. H. Johansson. Global consensus for
discrete-time multi-agent systems with input saturation constraints. Automatica
(50), 499-506, February 2014. https://doi.org/10.1016/j.automatica.2013.11.008.

7. V. Julián, V. Botti. Developing Real-Time Multi-Agent Systems. Integrated Com-
puter Aided Engineering 11 (2), November 2002. https://content.iospress.com/
articles/integrated-computer-aided-engineering/ica00172.

8. M. Winikoff, S. Cranefield. On the testability of BDI agent systems. Journal of
Artificial Intelligence Research, 2014. https://www.jair.org/index.php/jair/article/
view/10903.


